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ABSTRACT

We prove a subspace theorem for homogeneous polynomial forms which

generalizes Schmidt’s subspace theorem for linear forms. Further, we

formalize the subspace theorem into a form which is just the counterpart

of a second main theorem in Nevanlinna’s theorem, and also suggest a

problem.

1. Introduction

Let κ be a number field and let κ̄ be an algebraic closure. Let Mκ be the

canonical set of distinct inequivalent valuations (or places) of κ satisfying the

product formula.
∏

ρ∈Mκ

‖x‖ρ = 1, x ∈ κ∗.

Let S be a finite subset of Mκ containing the subset of all Archimedean valua-

tions in Mκ. We will prove the following subspace theorem on hypersurfaces:
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Theorem 1.1: For ρ ∈ S, i = 0, . . . , n, let fρi be a homogeneous polynomial of

degree m ≥ 1 in n+ 1 variables with coefficients in κ such that for each ρ ∈ S,

the system

fρi(ξ) = 0, i = 0, . . . , n

has only the trivial solution ξ = 0 in κ̄n+1. Then for any ε > 0 there exist

hypersurfaces Y1, . . . , Ys of κ̄n+1 such that the inequality

(1)
∏

ρ∈S

n
∏

i=0

1

‖fρi(ξ)‖ρ
≤ {max

ρ∈S
‖ξ‖ρ}ε

holds for all S-integral points ξ in κn+1 − ⋃

i Yi.

In particular, if m = 1, the proof of the main theorem shows that the hyper-

surfaces Y1, . . . , Ys in fact are hyperplanes, and so Theorem 1.1 is just Schmidt’s

Subspace Theorem. We even suggested Theorem 1.1 in [6] (or see [7]). Recently,

P. Corvaja and U. Zannier [1] proved an analogue of Schmidt’s Subspace The-

orem for arbitrary polynomials in place of linear forms, in which the product

of norms of n + 1 homogeneous polynomials fρi(ξ) of n + 1 variables in (1) is

replaced by a product of ‖gρi(x)‖1/ deg(gρi)
ρ of n − 1 arbitrary polynomials gρi

of n variables x = (x1, . . . , xn), and the power ε at the right side of (1) has

the form n − µ + ε, where µ is a positive number depending on degrees of the

polynomials which is equal to n− 1 if the degrees are equal. In this paper, we

will utilize Corvaja–Zannier’s methods to prove Theorem 1.1.

Let X ⊂ PN be a projective subvariety of dimension n defined over κ. Assume

that 1 ≤ n < N . Further, let cρi(ρ ∈ S, i = 0, . . . , N) be nonnegative reals.

Faltings and Wüstholz [4] proved that the set of solutions of the following system

of inequalities,

(2) log

(‖xi‖ρ

‖x‖ρ

)

≤ −cρih(x), ρ ∈ S, i = 0, . . . , N, x = [x0, . . . , xN ] ∈ X(κ),

is contained in the union of finitely many proper subvarieties of X if the ex-

pectation of a particular probability distribution is larger than 1. Ferretti [5]

showed that this latter condition is equivalent to

(3)
1

(n+ 1) deg(X)

∑

ρ∈S

eX(cρ) > 1,

where cρ = (cρ0, . . . , cρN ) and eX(cρ) is the Chow weight of X with respect to

cρ. If X is a linear variety, then the result of Faltings and Wüstholz is equiva-

lent to Schmidt’s Subspace Theorem. Whereas Schmidt’s proof of his subspace
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theorem is based on techniques from Diophantine approximation and geometry

of numbers, Faltings and Wüstholz developed a totally different method, based

on Faltings’ product theorem. Using the method of Faltings and Wüstholz,

Ferretti obtained a quantitative version of their result, an equivalent version of

which reads as follows. Assume that

(4)
1

(n+ 1) deg(X)

∑

ρ∈S

eX(cρ) > 1 + δ

with δ > 0. Then there are explicitly computable constants c1, c2, c3 depending

on N , n, δ, κ, S and some geometry invariants of X such that the set of solu-

tions of (2) with h(x) ≥ c1(1+h(X)) lies in the union of at most c2 proper sub-

varieties of X , each of degree ≤ c3. Evertse and Ferretti [3] proved another

quantitative version of the result of Faltings and Wüstholz, in which the con-

stants c1, c2, c3 depend only N , n, δ and the degree of X . In particular, if the

mapping ξ 7−→ [fρ0(ξ), . . . , fρn(ξ)] is a finite morphism from Pn to Pn for each

ρ ∈ S, then a version of Theorem 1.1 can be deduced from the result of Evertse

and Ferretti.

2. Formalization of Theorem 1.1

To compare directly the main theorem in this paper with its analogue in Nevan-

linna theory (or value distribution theory) based on the view of Vojta’s dictio-

nary [12], we first formalize Theorem 1.1 into a form (Theorem 2.2) which is

just the counterpart of the second main theorem (Theorem 2.3) in Nevanlinna

theory.

Let κ be a number field and let ρ be a valuation of κ. We denote by κρ the

completion of κ at ρ, and shall assume that the absolute values | · |ρ and ‖ · ‖ρ

are normalized so that

|p|ρ = p−1, ‖p‖ρ = |p|[κρ:Qp]/[κ:Q]
ρ

if ρ|p and similarly for Archimedean ρ. Let Vκ be a vector space of finite

dimension n + 1 > 0 over κ. Take a base e = (e0, . . . , en) of Vκ. For ξ =

ξ0e0 + · · · + ξnen ∈ Vκ, define the norm

|ξ|ρ =

{

(|ξ0|2ρ + · · · + |ξn|2ρ)1/2 if ρ is Archimedean,
max0≤i≤n{|ξi|ρ} if ρ is non-Archimedean.

We will use notation

‖ξ‖ρ = |ξ|[κρ:Qp]/[κ:Q]
ρ
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if ρ|p and similarly for Archimedean ρ. The dual vector space V ∗
κ of Vκ consists

of all κ-linear functions α : Vκ −→ κ, and we call 〈ξ, α〉 = α(ξ) the inner

product of ξ ∈ Vκ and α ∈ V ∗
κ . A norm on Vκ induces a norm on V ∗

κ .

Let κ̄ be an algebraic closure of κ. Let V = Vκ̄ be a vector space of dimension

n+ 1 > 0 over κ̄. Write the projective spaceP(V ) = V/κ̄∗

and let P: V∗ −→ P(V ) be the standard projection, where V∗ = V − {0}. If

A ⊂ V , abbreviate P(A) = P(A ∩ V∗). If α ∈ V ∗
∗ , the n-dimensional linear

subspace

E[a] = E[α] = Ker(α) = α−1(0)

depends on a = P(α) ∈ P(V ∗) only, and Ë[a] = P(E[a]) is a hyperplane inP(V ). Take ξ ∈ V∗ and set x = P(ξ). When the coordinates of ξ and α are lain

in κ, the distance from x to Ë[a] with respect to a valuation ρ is defined by

|x, a|ρ =
|〈ξ, α〉|ρ
|ξ|ρ|α|ρ

with 0 ≤ |x, a|ρ ≤ 1 by using Schwarz inequality |〈ξ, α〉|ρ ≤ |ξ|ρ|α|ρ. We will

use the normalization

‖x, a‖ρ = |x, a|[κρ:Qp]/[κ:Q]
ρ

if ρ|p and similarly for Archimedean ρ.

Let
⊗

m V be the m-fold tensor product of V . The set of all symmetric vectors

in
⊗

m V is a linear subspace of
⊗

m V , denoted by ∐mV , called the m-fold

symmetric tensor product of V . For ξ ∈ V∗, let ξ∐m be the m-th symmetric

tensor power, and define x∐m = P(ξ∐m) for x = P(ξ). Let V[m] be the vector

space of all homogeneous polynomials of degree m on V . We obtain a linear

isomorphism ∼: ∐mV
∗ −→ V[m] defined by

α̃(ξ) = 〈ξ∐m, α〉, ξ ∈ V, α ∈ ∐mV
∗.

Thus if ξ 6= 0 and α 6= 0, the distance |x∐m, a|ρ is well defined for x∐m = P(ξ∐m)

and a = P(α). If α 6= 0, the n-dimensional subspace Em[a] = α̃−1(0) in V

depends on a only, and Ëm[a] = P(Em[a]) is a hypersurface of degree m inP(V ). Thus P(∐mV
∗) bijectively parameterizes the hypersurfaces in P(V ). If

we identify an element ξ of V with its coordinates with respect to a fixed base

of V, then there exist non-zero αρ,i ∈ ∐mV
∗ such that those polynomials in

Theorem 1.1 can be expressed as

(5) fρi(ξ) = α̃ρ,i(ξ) = 〈ξ∐m, αρ,i〉.
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Take a sequence{m0,m1, . . . ,mq} of positive integers. LetA ={a0, a1, . . . , aq}
be a family of points aj ∈ P(∐mj

V ∗). Take αj ∈ ∐mj
V ∗−{0} with P(αj) = aj ,

and define a homogeneous polynomial of degree mj :

α̃j(ξ) = 〈ξ∐mj , αj〉, ξ ∈ V, j = 0, 1, . . . , q.

Take non-negative integers a and b with a ≤ b. Let Jb
a be the set of all increasing

injective mappings λ: Z[0, a] −→ Z[0, b] , where Z[0, a] is the set of integers

0, 1, . . . , a. According to Eremenko and Sodin [2], we recall the following:

Definition 2.1: The family A = {a0, a1, . . . , aq} (q ≥ n) is said to be admissible

(or in general position) if, for every λ ∈ Jq
n, the system

(6) α̃λ(i)(ξ) = 0, i = 0, 1, . . . , n

has only the trivial solution ξ = 0 in V .

Recall that Mκ is the canonical set of distinct inequivalent valuations of κ

satisfying the product formula. We can define the absolute height of ξ ∈
Vκ − {0} by

H(ξ) =
∏

ρ∈Mκ

‖ξ‖ρ.

We shall use the absolute (logarithmic) height h(ξ) which is defined by

h(ξ) = logH(ξ). Take x ∈ P(V ). Then there exists ξ ∈ V∗ such that x = P(ξ),

and so

H(x) = H(ξ), h(x) = h(ξ)

are well defined. Recall the definition of S, which is a finite subset of Mκ

containing the subset of all Archimedean valuations in Mκ. Denote by Oκ,S the

ring of S-integers of κ, i.e.,

Oκ,S = {z ∈ κ| ‖z‖ρ ≤ 1, ρ 6∈ S},

and denote by OV,S the set of S-integral points of V , that is,

OV,S = {ξ ∈ V | ‖ξ‖ρ ≤ 1, ρ 6∈ S}.

We will prove that Theorem 1.1 is equivalent to the following result:

Theorem 2.2: Take ε > 0, q ≥ n. Assume that for ρ ∈ S, a familyAρ = {aρ,0, . . . , aρ,q} ⊂ P(∐mV
∗)
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is admissible. Then there exist points

bi ∈ P(∐mi
V ∗) (1 ≤ mi ∈ Z, i= 1, . . . , s <∞)

such that the inequality

(7)
∑

ρ∈S

q
∑

j=0

log
1

‖x∐m, aρ,j‖ρ
< m(n+ 1 + ε)h(x) +O(1)

holds for all x ∈ P(V ) − ⋃

i Ë
mi [bi].

Originally, Theorem 2.2 was conjectured by the present authors (see [6] or [7])

based on their proof of Shiffman’s conjecture (cf. [10]) over non-Archimedean

fields. Based on the Corvaja–Zannier’s methods, M. Ru [9] proved the Shiff-

man’s conjecture in value distribution theory as follows:

Theorem 2.3: Let f : Cm −→ P(VC ) be an algebraically non-degenerate mero-

morphic mapping. Fix a positive integer d. Let A = {aj}q
j=0 be a finite admis-

sible family of points aj ∈ P(∐dV
∗C ) with q ≥ n. Then there exists a constant

c > 0 such that Nevanlinna’s characteristic function Tf(r) and the proximity

functions mf∐d(r, aj) of f satisfy

(8)

q
∑

j=0

mf∐d(r, aj) ≤ d(n+ 1)Tf(r) + c log
{(ρ

r

)2m−1Tf (R)

ρ− r

}

+O(1)

for any r0 < r < ρ < R.

Based on Ye’s work [13], we can improve the error term in the main inequality

of Ru [9] into the form in (8) (cf. [8]). Finally, we suggest the following problem:

Conjecture 2.4: Take a positive real number ε > 0 and integers q ≥ n ≥ r ≥
1. Assume that for ρ ∈ S, a familyAρ = {aρ,0, . . . , aρ,q} ⊂ P(∐mV

∗)

is admissible. Then the set of points of P(V ) − ⋃

Ëm[aρ,j ] satisfying

(9)
∑

ρ∈S

q
∑

j=0

log
1

‖x∐m, aρ,j‖ρ
≥ m(2n− r + 1 + ε)h(x) +O(1)

is contained in a finite union of subvarieties of dimension ≤ r − 1 of P(V ).

In [6] (or see [7]), we proposed this problem for the case r = 1.
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3. Equivalence of Theorem 1.1 and Theorem 2.2

We will need some basic facts. Take a positive integer q ≥ n and an admissible

family A = {a0, a1, . . . , aq} of points aj ∈ P(∐mj
V ∗).A = {a0, a1, . . . , aq} (q ≥ n).

Let | · | be a norm defined over a base e = (e0, . . . , en) of V . Write ξ = ξ0e0 +

· · · + ξnen. By Hilbert’s Nullstellensatz (cf. [11]), for each k ∈ {0, . . . , n}, the

identity

(10) ξs
k =

n
∑

i=0

bλik(ξ)α̃λ(i)(ξ) (λ ∈ Jq
n)

is satisfied for some natural number s with

s ≥ m = max
0≤j≤q

mj ,

where bλik ∈ κ̄[ξ0, . . . , ξn] are homogeneous polynomials of degree s − mλ(i)

whose coefficients are integral-valued polynomials at the coefficients of α̃λ(i)

(i = 0, . . . , n). Write

(11) bλik(ξ) =
∑

σ∈Jn,s−mλ(i)

bλσikξ
σ(0)
0 · · · ξσ(n)

n , bλσik ∈ κ̄.

Here Jn,d is the set of all mappings σ : Z[o, n] → Z[0, d] such that |σ| =

σ(0) + · · · + σ(n) = d.

First of all, assume that the norm | · | is non-Archimedean. From (10) and

(11), we have

(12) |ξk|s ≤ (max
i,σ

|bλσik| · |αλ(i)|) max
0≤i≤n

{ |α̃λ(i)(ξ)|
|ξ|mλ(i) |αλ(i)|

}

|ξ|s.

Note that

(13) max
0≤k≤n

|ξk|s = |ξ|s, |α̃j(ξ)| ≤ |ξ|mj |αj |.

By maximizing the inequalities (12) over k, 0 ≤ k ≤ n, and using (13), we

obtain

(14) 1 ≤ max
k,i,σ

|bλσik| · |αλ(i)|.

Define the gauge

(15) Γ(A ) = min
λ∈Jq

n

min
k,i,σ

{ 1

|bλσik| · |αλ(i)|
}

,
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with 0 < Γ(A ) ≤ 1. From (12), (13) and (15), we obtain

Γ(A ) ≤ max
0≤i≤n

{ |α̃λ(i)(ξ)|
|ξ|mλ(i) |αλ(i)|

}

,

that is,

(16) Γ(A ) ≤ max
0≤i≤n

|x∐mλ(i) , aλ(i)|, λ ∈ Jq
n, x ∈ P(V ).

If the norm | · | is Archimedean, now (10) and (11) imply

(17) |ξk|s ≤
( n

∑

i=0

∑

σ

|bλσik| · |αλ(i)|
)

max
0≤i≤n

{ |α̃λ(i)(ξ)|
|ξ|mλ(i)

∗ |αλ(i)|
}

|ξ|s∗,

where |ξ|∗ = maxk |ξk|. W.l.o.g., we may assume

|ξ| = (|ξ0|2 + · · · + |ξn|2)1/2.

Since |ξ| ≤
√
n+ 1|ξ|∗, then (17) yields

(18) 1 ≤ (n+ 1)m/2 max
k

n
∑

i=0

∑

σ

|bλσik| · |αλ(i)|.

Define the gauge

(19) Γ(A ) = (n+ 1)−m/2 min
λ∈Jq

n

min
k

{ n
∑

i=0

∑

σ

|bλσik| · |αλ(i)|
}−1

,

with 0 < Γ(A ) ≤ 1. From (17) and (19), we obtain the inequality (16).

Lemma 3.1: For x ∈ P(V ), r ∈ R, define

(20) A (x, r) = {j| |x∐mj , aj | < r, 0 ≤ j ≤ q}.

If 0 < r ≤ Γ(A ), then #A (x, r) ≤ n.

Proof: Assume that #A (x, r) ≥ n+ 1. Then λ ∈ Jq
n exists such that

{λ(0), . . . , λ(n)} ⊆ A (x, r).

Hence

|x∐mλ(i) , aλ(i)| < r ≤ Γ(A ), i = 0, . . . , n,

which is impossible according to (16).
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Lemma 3.2: Take x ∈ P(V ) such that |x∐mj , aj | > 0 for j = 0, . . . , q. Then

q
∏

j=0

1

|x∐mj , aj|
≤

( 1

Γ(A )

)q−n

max
λ∈Jq

n

{ n
∏

i=0

1

|x∐mλ(i) , aλ(i)|

}

(21)

≤
( 1

Γ(A )

)q+1−n

max
λ∈Jq

n−1

{ n−1
∏

i=0

1

|x∐mλ(i) , aλ(i)|

}

.(22)

Proof: Take r = Γ(A ). Lemma 3.1 implies #A (x, r) ≤ n. Thus σ ∈ Jq
n exists

such that A (x, r) ⊆ {σ(0), . . . , σ(n)}. Note that Imλ − A (x, r) 6= ∅ for any

λ ∈ Jq
n. Then we have

q
∏

j=0

1

|x∐mj , aj |
≤ rn−q

n
∏

i=0

1

|x∐mσ(i) , aσ(i)|

≤
( 1

Γ(A )

)q−n

max
λ∈Jq

n

{ n
∏

i=0

1

|x∐mλ(i) , aλ(i)|

}

≤
( 1

Γ(A )

)q+1−n

max
λ∈Jq

n−1

{ n−1
∏

i=0

1

|x∐mλ(i) , aλ(i)|

}

.

Lemma 3.3 (cf. [6]): For x ∈ P(V ), we can choose ξ ∈ OV,S such that x = P(ξ),

and the absolute height of x satisfies

max

{

max
ρ∈S

‖ξ‖ρ,
∏

ρ∈S

‖ξ‖ρ

}

≤ cH(x) ≤ c{max
ρ∈S

‖ξ‖ρ}#S,

where c is a constant depending only on S but not on x.

Obviously, Theorem 2.2 yields immediately Theorem 1.1 by taking q = n and

using Lemma 3.3. Conversely, Theorem 1.1 implies Theorem 2.2. In fact, by

Lemma 3.2 and Theorem 1.1, there exist points

bi ∈ P(∐mi
V ∗) (1 ≤ mi ∈ Z, i = 1, . . . , s <∞)

such that the inequality

∏

ρ∈S

q
∏

j=0

1

‖x∐m, aρ,j‖ρ
≤

∏

ρ∈S

{

( 1

Γ(Aρ)

)q−n n
∏

j=0

1

‖x∐m, aρ,σρ(j)‖ρ

}

≤ c1

(

∏

ρ∈S

‖ξ‖m
ρ

)n+1(
∏

ρ∈S

n
∏

j=0

1

‖〈ξ∐m, αρ,σρ(j)〉‖ρ

)

≤ c1

(

∏

ρ∈S

‖ξ‖ρ

)m(n+1)

(max
ρ∈S

‖ξ‖ρ)
ε
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holds for all points x = P(ξ) ∈ P(V ) − ⋃

i Ë
mi [bi], where c1 is constant, and

αρ,j ∈ ∐mV
∗ − {0} with aρ,j = P(αρ,j). By Lemma 3.3, there exists a constant

c2 such that
∏

ρ∈S

q
∏

j=0

1

|‖x∐m, aρ,j |‖ρ
≤ c2H(x)m(n+1)+ε,

and hence Theorem 2.2 follows.

4. Proof of Theorem 2.2

We now proceed with the proof of Theorem 2.2 which will be based on the

methods of P. Corvaja and U. Zannier [1]. First of all, we recall several lem-

mas from [1]. We shall use the lexicographic ordering on the p-tuples

ν = (ν(1), . . . , ν(p)) ∈ Zp
+, namely, µ > ν if and only if for some l ∈ {1, . . . , p}

we have µ(k) = ν(k) for k < l and µ(l) > ν(l).

Lemma 4.1: Let A be a commutative ring and let {g1, . . . , gp} be a regular

sequence in A. Suppose that for some y, x1, . . . , xh ∈ A we have an equation

g
ν(1)
1 · · · gν(p)

p y =

h
∑

k=1

g
µk(1)
1 · · · gµk(p)

p xk,

where µk > ν for k = 1, . . . , h. Then y ∈ Ip = (g1, . . . , gp), the ideal generated

by g1, . . . , gp.

Lemma 4.2: Let β̃1, . . . , β̃p be homogeneous polynomials in κ̄[ξ0, . . . , ξn]. As-

sume that they define a subvariety of P(V ) of dimension n−p. Then {β̃1, . . . , β̃p}
is a regular sequence.

Lemma 4.3: Let β̃1, . . . , β̃n be homogeneous polynomials in κ̄[ξ0, . . . , ξn]. As-

sume that they define a subvariety of P(V ) of dimension 0. Then, for all large

N ,

dim V[N ]/{(β̃1, . . . , β̃n) ∩ V[N ]} = deg(β̃1) · · ·deg(β̃n).

Take ρ ∈ S and take a positive integer d. Let Aρ = {aρ,j}q
j=0 be a finite

admissible family of points aρ,j ∈ P(∐dV
∗) with q ≥ n. Take αρ,j ∈ ∐dV

∗−{0}
with P(αρ,j) = aρ,j , and define

α̃ρ,j(ξ) = 〈ξ∐d, αρ,j〉, ξ ∈ V, j = 0, 1, . . . , q.

W.l.o.g., assume |αρ,j | = 1 for j = 0, . . . , q. Lemma 3.2 implies

(23)

q
∏

j=0

1

‖x∐d, aρ,j‖ρ
≤

( 1

Γ(Aρ)

)q+1−n

max
λ∈Jq

n−1

n−1
∏

i=0

1

‖x∐d, aρ,λ(i)‖ρ
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for x ∈ P(V ) − ⋃q
j=0 Ë

d[aρ,j ]. According to P. Corvaja and U. Zannier [1], we

will estimate the term in the right sides of (23) as follows.

Now pick λ ∈ Jq
n−1. SinceAρ is admissible, then α̃ρ,λ(0), . . . , α̃ρ,λ(n−1) define a

subvariety of P(V ) of dimension 0. Take a multi-index ν = (ν(1), . . . , ν(n)) ∈ Zn
+

with length

|ν| = ν(1) + · · · + ν(n) ≤ N/d.

For any γ = (γ(1), . . . , γ(n)) ∈ Zn
+, abbreviate

α̃γ
ρ,λ = α̃

γ(1)
ρ,λ(0) · · · α̃

γ(n)
ρ,λ(n−1)

and define the spaces

VN,ν =
∑

γ≥ν

α̃γ
ρ,λV[N−d|γ|]

with VN,0 = V[N ] and VN,µ ⊂ VN,ν if µ > ν. Thus the VN,ν define a filtration

of V[N ]. Next we consider quotients between consecutive spaces in the filtration.

Lemma 4.4: Suppose that VN,µ follows VN,ν in the filtration:

(24) V[N ] ⊃ · · · ⊃ VN,ν ⊃ VN,µ ⊃ · · · ⊃ {0}.

Then there is an isomorphism

VN,ν/VN,µ
∼= V[N−d|ν|]/{(α̃ρ,λ(0), . . . , α̃ρ,λ(n−1)) ∩ V[N−d|ν|]}.

By Lemma 4.3 and Lemma 4.4, there exists an integer N0 depending only on

α̃ρ,λ(0), . . . , α̃ρ,λ(n−1) such that

(25) ∆ν := dimVN,ν/VN,µ

{

= dn, if d|ν| < N −N0;
≤ dimV[N0], otherwise.

Now we choose inductively a suitable basis of V[N ] in the following way. We

start with the last nonzero VN,µ in the filtration (24) and pick any basis of it.

Suppose µ > ν are consecutive n-tuples such that d|ν|, d|µ| ≤ N . It follows

directly from the definition that we may pick representatives α̃ν
ρ,λβ̃ ∈ VN,ν of

elements from the quotient space VN,ν/VN,µ, where β̃ ∈ V[N−d|ν|]. We extend

the previously constructed basis in VN,µ by adding these representatives. In

particular, we have obtained a basis for VN,ν and our inductive procedure may

go on unless VN,ν = V[N ], in which case we stop. In this way, we obtain a basis

{ψ̃1, . . . , ψ̃M} of V[N ], where M = dimV[N ].

For a fixed k ∈ {1, . . . ,M}, assume that ψ̃k is constructed with respect to

VN,ν/VN,µ. We may write ψ̃k = α̃ν
ρ,λβ̃ with β̃ ∈ V[N−d|ν|]. Then we have a

bound

‖ψ̃k(ξ)‖ρ = ‖α̃ν
ρ,λ(ξ)‖ρ‖β̃(ξ)‖ρ ≤ c′‖α̃ν

ρ,λ(ξ)‖ρ‖ξ‖N−d|ν|
ρ ,
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where c′ is a positive constant depending only on ψ̃k, not on ξ. Observe that

there are precisely ∆ν such functions ψ̃k in our basis. Hence, taking the product

over all functions in the basis, and then taking logarithms, we get

(26)

log

M
∏

k=1

‖ψ̃k(ξ)‖ρ ≤
∑

ν

n−1
∑

i=0

∆νν(i+ 1) log ‖α̃ρ,λ(i)(ξ)‖ρ

+

(

∑

ν

∆ν(N − d|ν|)
)

log ‖ξ‖ρ + c,

where c is a positive constant depending only on ψ̃k, not on ξ. Here ν in the

summation ranges over the n-tuples in the filtration (24) with |ν| ≤ N/d.

Note that

(27) M = dim V[N ] =

(

n+N

N

)

=
Nn

n!
+O(Nn−1),

T
∑

t=0

#Jn−1,t = #Jn,T =

(

n+ T

T

)

, T ∈ Z+,

and that, since the sum below is independent of j, we have that, for any positive

integer T and for every 0 ≤ j ≤ n,

(28)

∑

ν∈Jn,T

ν(j) =
1

n+ 1

∑

ν∈Jn,T

n
∑

j=0

ν(j) =
1

n+ 1

∑

λ∈Jn,T

T

=
T

n+ 1

(

n+ T

T

)

=
T n+1

(n+ 1)!
+O(T n).

Then, for N divisible by d and for every 0 ≤ i ≤ n − 1, (25) and (28) with

T = N/d yield

(29)
∑

ν

∆νν(i+ 1) =
Nn+1

d(n+ 1)!
+O(Nn),

which implies

(30)
∑

ν

∆νd|ν| = d

n−1
∑

i=0

∑

ν

∆νν(i+ 1) =
nNn+1

(n+ 1)!
+O(Nn).

Note that
∑

ν

∆νN =
Nn+1

n!
+O(Nn).
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Therefore, by (26), (27), (29) and (30), we have

(31)

log

M
∏

k=1

‖ψ̃k(ξ)‖ρ ≤ Nn+1

d(n+ 1)!

(

1 +O
( 1

N

))

log

n−1
∏

i=0

‖α̃ρ,λ(i)(ξ)‖ρ

+
Nn+1

(n+ 1)!

(

1 +O
( 1

N

))

log ‖ξ‖ρ + c

≤K
{

log

n−1
∏

i=0

‖α̃ρ,λ(i)(ξ)‖ρ + d log ‖ξ‖ρ

}

+ c,

where K = K(d, n,N) is a positive constant such that

(32) K =
Nn+1

d(n+ 1)!

(

1 +O
( 1

N

))

.

Let φ̃1, . . . , φ̃M be a fixed basis of V[N ] such that, when ξ ∈ V − {0},

Ξ = (φ̃1(ξ), . . . , φ̃M (ξ)) ∈ CM − {0}.

Then ψ̃k can be expressed as a linear form Lk in φ̃1, . . . , φ̃M so that ψ̃k(ξ) =

Lk(Ξ). The linear forms L1, . . . , LM are linearly independent. By (31), we

obtain

log

M
∏

k=1

‖Lk(Ξ)‖ρ ≤ K

{

log

n−1
∏

i=0

‖α̃ρ,λ(i)(ξ)‖ρ + d log ‖ξ‖ρ

}

+ c

= K

{

log

n−1
∏

i=0

‖α̃ρ,λ(i)(ξ)‖ρ

‖ξ‖d
ρ

+ (n+ 1)d log ‖ξ‖ρ

}

+ c,

which implies

(33) log
n−1
∏

i=0

‖ξ‖d
ρ

‖α̃ρ,λ(i)(ξ)‖ρ
≤ 1

K

{

log
M
∏

k=1

1

‖Lk(Ξ)‖ρ
+ c

}

+ (n+ 1)d log ‖ξ‖ρ,

or, equivalently,

(34)
n−1
∏

i=0

‖ξ‖d
ρ

‖α̃ρ,λ(i)(ξ)‖ρ
≤

{

ec
M
∏

k=1

1

‖Lk(Ξ)‖ρ

}1/K

‖ξ‖(n+1)d
ρ .

Fix ε > 0. By Schmidt’s Subspace Theorem for linear forms (see [12]), for all

λ ∈ Jq
n−1, the set Q of all Ξ ∈ OV[N ],S satisfying

∏

ρ∈S

N
∏

k=1

‖Lk(Ξ)‖ρ < {max
ρ∈S

‖Ξ‖ρ}−ε
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is contained in a finite union of hyperplanes of V[N ]. Note that Q is just a finite

union of hypersurfaces of degree N in V , say,

Q =

r
⋃

j=1

EN [bj ], bj ∈ P(∐NV
∗),

and that there is a positive constant c̃ such that ‖Ξ‖ρ ≤ c̃‖ξ‖N
ρ for ρ ∈ S. Then

∏

ρ∈S

n−1
∏

i=0

‖ξ‖d
ρ

‖α̃ρ,λ(i)(ξ)‖ρ
≤ {ec(max

ρ∈S
c̃‖ξ‖N

ρ )ε}1/K

(

∏

ρ∈S

‖ξ‖ρ

)(n+1)d

,

where

ξ 6∈
⋃

ρ∈S

q
⋃

j=0

Ed[aρ,j ] ∪Q.

If we choose N large enough such that N/K ≤ 1, then Lemma 3.3 implies that

there is a constant c depending only on S but not on ξ such that

(35)
∏

ρ∈S

n−1
∏

i=0

‖ξ‖d
ρ

‖α̃ρ,λ(i)(ξ)‖ρ
≤ cH(ξ)(n+1+ε)d.

Therefore, Theorem 2.2 follows from (23) and (35).

Remark on (35): If we take λ ∈ Jq
n, Lemma 3.1 means that there exists an

index i0 ∈ {0, 1, . . . , n} such that

‖x∐d, aρ,λ(i0)‖ρ ≥ Γ(Aρ), x = P(ξ).

W.l.o.g., we may assume i0 = n. Thus from (34), according to the arguments

of (35) we can obtain

(36)
∏

ρ∈S

n
∏

i=0

1

‖α̃ρ,λ(i)(ξ)‖ρ
≤ c(max

ρ∈S
‖ξ‖ρ)

ε.

Thus the above methods will yield a proof of Theorem 1.1 as well.
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